
1

Progress Of Different TCP Variant
∗Krishan Bhatia †Ajinkya Valanjoo,

∗ Assistant professor (Electronics and Tele-Comm)S.S.J.C.E.T. Mumbai, India
†P.G. Student (Electronics and Tele-Comm) V.E.S. Institute of Technology Mumbai,India

Abstract—At the beginning of development of network technol-
ogy TCP were designed assuming that communication is using
wired network, but recently there is huge demand and use of
wireless network for communication. TCP protocol using wireless
network unable to handle causes of packet losses in wireless
network and also causes of unnecessary delay .So the biggest
challenge in MANET is design of TCP variant which should give
best performance in all scenarios. Uptil now more than dozens
of variants designed and modified by research community but
not a single TCP variant performance well in all scenarios. Such
as congestion, link failure, signal loss, interference as well as rod
and grid network topologies. As some of TCP-variant performs
well in particular scenarios but degrades in other scenarios. Our
objective was to design such a TCP variant which has to perform
optimum in every network scenario For Example congestion, link
failure, signal loss and interference scenario as well as chain and
topologies.

Index Terms—TCP, MANET.

I. INTRODUCTION
A. TCP and Mobile Ad-Hoc Networks

Transmission Control Protocol (TCP) [1] is the predomi-
nant Internet protocol and it carries approximately 90 % of
Internet traffic in todays heterogeneous wireless and wired
networks.TCP is reliable end to end protocol because TCP
is trying to provide reliable data transmission between two
entities. TCP is widely used as a connection oriented transport
layer protocol that provides reliable data packet delivery over
unreliable links.TCP primary purpose is to provide a connec-
tion oriented reliable data transfer service between different
applications to be able to provide these services on top of an
unreliable communication system. TCP needs to consider data
transfer, reliability flow control, multiplexing, TCP segment,
and congestion control and connection management. TCP does
not depend on the underlying network layers and, hence,
design of various TCP variants is based on the properties of
wired networks.

TCP consists of a set of rules: for the protocol, that are used
with the Internet Protocol, and for the IP, to send data ”in a
form of message units” between computers over the Internet.
While IP handles actual delivery of the data, TCP keeps track
of the individual units of data transmission, called segments
that a message is divided into for efficient routing through the
network.

MANET is considered as promising communication net-
work in situations where rapid deployment and self-
configuration are essential. In ad hoc networks, nodes are
allowed to communicate with each other without any existing
infrastructure[1].

Here every node should also play the role of a router. This
kind of networking can be applied to scenarios like conference
room, disaster management, and battle field communication
and places where deployment of infrastructure is either diffi-

cult or costly.
Opposed to infrastructure wireless networks, where each

user directly communicates with an access point or base
station, a mobile ad hoc network, or MANET, does not rely
on a fixed infrastructure for its operation. The network is
an autonomous transitory association of mobile nodes that
communicate with each other over wireless links. Nodes that
lie within each others send range can communicate directly
and are responsible for dynamically discovering each other. In
order to enable communication between nodes that are not
directly within each others send range, intermediate nodes
act as routers that relay packets generated by other nodes to
their destination. These nodes are often energy constrained
that is, battery-powered devices with a great diversity in
their capabilities. Furthermore, devices are free to join or
leave the network and they may move randomly, possibly
resulting in rapid and unpredictable topology changes. In this
energy-constrained, dynamic, distributed multi-hop environ-
ment, nodes need to organize themselves dynamically in order
to provide the necessary network functionality in the absence
of fixed infrastructure or central administration.

B. Problems in Wireless Network

In ad hoc networks, the principal problem of TCP lies in
performing congestion control in case of losses that are not
induced by network congestion. Since bit error rates are very
low in wired networks, nearly all TCP versions nowadays as-
sume that packets losses are due to congestion. Consequently,
when a packet is detected to be lost, either by timeout or by
multiple duplicated ACKs, TCP slows down the sending rate
by adjusting its congestion window. Unfortunately, wireless
networks suffer from several types of losses that are not related
to congestion, making TCP not adapted to this environment[2].

Literature survey of TCP over Ad Hoc Networks we iden-
tified following problems.

In Wireless ad-hoc networks nodes may be mobile therefore
no predefined topology as nodes can joins and leaves network
so accordingly topology may change. When the topology
of the network changes every time, then routing mechanism
needs to trigger to find alternative roots to do the reliable end
to end communication between sender and receiver.

Thus due to frequently changes in topology communication
links may failures and there will be the loss of data segment.
To recover segment loss TCP sender reduces sending rate by
triggering congestion control mechanism which sets size of
congestion window of its lowest value. Assuming that the loss
of packet is due to congestion in network which is totally
misjudged and there will be the underutilization of available
bandwidth. Hence the performance of TCP degrades. These
problems are due to lossy channels, Hidden and exposed

2
stations, path asymmetry which may appear in several forms
like BW asymmetry, loss rate asymmetry and route asymmetry.

The paper is organised as follows. Section I provides Intro-
duction. Section II Describes the Standard TCP congestion
control algorithms Section III describes the various TCP
variants IV Conclusion And Section V Future Work

II. TCP CONGESTION CONTROL ALGORITHM
A. Slow start

Slow start is conducted in the beginning of every TCP
connection and its main purpose is to find the maximum
available bandwidth at which it can send data without ca using
the network to be congested. To realize this, slow start forces
the TCP sender to transmit at a slow sending rate and then
rapidly increasing it until the available bandwidth between the
hosts is believed to be found[3].

Slow Start Algorithm
Initial: cwnd = 1;
For (each packet Acked)
cwnd++;
Until (congestion event/ cwndmssthresh)

Fig. 1. Congestion Window Trace Format

B. Congestion avoidance

If the receiver window is large enough, the slow start
mechanism described in the previous routers in between the
hosts will start discarding packets. As mentioned earlier TCP
interprets packet loss as a sign of congestion, and when this
happens TCP invokes the Congestion Avoidance mechanism.
Even though slow start and congestion avoidance is two dif-
ferent mechanisms they are more easily described together. In
the joint description below a new TCP variable is introduced.
This variable, ssthresh, is the slow start threshold which TCP
uses to determine if slow start or congestion avoidance is to
be conducted[3].

Congestion Avoidance Algorithm:
/* slow start is over and cwndmssthresh */
Every Ack:
cwnd = cwnd + (1/cwnd)

Until (Timeout or 3 DUPACKs)

C. Fast Retransmit

If an out-of-order segment is received TCP generates a so
called duplicate acknowledgment. This duplicate acknowledg-
ment is sent immediately from the receiver to the sender
indicating that a segment arrived out-of-order, and which
segment that was supposed to be received. Since it is not
possible to know whether the duplicate acknowledgment was
caused by a lost segment or just reordering of segments,
the sender waits for three duplicate acknowledgments before
retransmitting the segment. If this limit would have been
lower, this would increase the chance of reordered segments
causing duplicates to be created, and transmitted needlessly.
The advantage of this mechanism is that TCP does not have to
wait for the retransmission timer to expire. It simply assumes
that three duplicate acknowledgments is a good indicator of a
lost segment[3].

Fast Retransmit Algorithm:
/* After receiving 3 DUPACKs */
Resend lost packet;
Invoke Fast Recovery algorithm

D. Fast Recovery

After fast retransmit is conduct congestion avoidance and
not slow start is performed. This behavior iscalled Fast Re-
covery[1]. Fast recovery is an algorithm allows for higher
throughput under congestion,especially when using large con-
gestion windows. Receiving three duplicate acknowledgments
tells TCP more than the expiration of the retransmission
timer. Since the receiving, TCP only can generate duplicate
acknowledgments when it is receiving other segments it is an
indication that data still flows between the different hosts, and
that the congestion is not that severe. By using this approach,
skipping the slow start, the TCP does not reduce the transfer
rate unnecessarily much[3].

Fast Recovery Algorithm:
/* after fast retransmit; do not enter slow start */
ssthresh = cwnd / 2;
cwnd = ssthresh + 3;
Each DACK received;
cwnd ++;
Send new packet if allow;
After receiving an Ack:
If partial Ack;
Stay in fast recovery;
Retransmit next lost packet (one packet per RTT);
If Full Ack;
cwnd = ssthresh;
Exit fast recovery;
Invoke Congestion Avoidance Algorithm;
When Timeout:
ssthresh = cwnd /2;
cwnd = 1;
Invoke Slow Start Algorithm;

3
III. TCP VARIANTS

A. TCP Tahoe

Early TCP implementations followed a go-back- model
using cumulative positive acknowledgment and requiring a
retransmit timer expiration to re-send data lost during trans-
port[4]. In the process of trying to improve the original TCP
three traffic management mechanisms slow start, congestion
avoidance and fast retransmit were introduced to the original
TCP and the new TCP version was named as TCP Tahoe.TCP
Tahoe is the TCP variant developed by Jacobson in 1988.
It uses Additive Increase Multiplicative Decrease (AIMD)
algorithm to adjust window size. It means that increases the
congestion window by one for successful packet delivery and
reduces the window to half of its actual size in case of data
loss or any delay only when it receives the first negative
acknowledge. In case of timeout event, it reduces congestion
window to 1 MSS[5].

TCP Tahoe uses packet loss probability to adjust the
congestion window size.

During Slow Start stage, TCP Tahoe increases window
size exponentially i.e. for every acknowledgement received,
it sends two packets.

During Congestion Avoidance, it increases the window size
by one packet per Round Trip Time (RTT) so as to avoid
congestion.

In case of packet loss, it reduces the window size to one
and enters in Slow Start stage.

Due to automatic set back to slow start mode of operation
with initial congestion window of one every time packet
loss is detected we see TCP Tahoe does not prevent the
communication link from going empty. Hence this may have
high cost in high bandwidth product links[4].

B. Tcp Reno

TCP Reno retains the basic principle of Tahoe, such as
slow starts and the coarse grain retransmit timer. However it
adds some intelligence over it so that lost packets are detected
earlier and the pipeline is not emptied every time a packet is
lost. Reno requires that we receive immediate acknowledge-
ment whenever a segment is received. The logic behind this
is that whenever we receive a duplicate acknowledgment, then
his duplicate acknowledgment could have been received if the
next segment in sequence expected, has been delayed in the
network and the segments reached there out of order or else
that the packet is lost. If we receive a number of duplicate
acknowledgements then that means that sufficient time have
passed and even if the segment had taken a longer path, it
should have gotten to the receiver by now. There is a very
high probability that it was lost. So Reno suggests FastRe-
Transmit. Whenever we receive 3 duplicate ACKs we take it as
a sign that the segment was lost, so we re-transmit the segment
without waiting for timeout. Thus we manage to re-transmit
the segment with the pipe almost full. Another modification
that RENO makes is in that after a packet loss, it does not
reduce the congestion window to 1. Since this empties the
pipe. It enters into an algorithm which we call Fast-Recovery.

Reno performs very well over TCP when the packet losses
are small. But when we have multiple packet losses in one win-

dow then RENO doesnt perform too well and its performance
is almost the same as Tahoe under conditions of high packet
loss. The reason is that it can only detect a single packet loss.
If there is multiple packet drops then the first info about the
packet loss comes when we receive the duplicate ACKs. But
the information about the second packet which was lost will
come only after the ACK for the retransmitted first segment
reaches the sender after one RTT[6].

Also it is possible that the CWD is reduced twice for
packet losses which occurred in one window. Suppose we send
packets 1, 2, 3, 4, 5, 6, 7, 8, 9 in that order. Suppose packets 1
and 2 are lost. The ACKs generated by 2, 4, 5 will cause the
retransmission of 1 and the CWD is reduced to 7. Then when
we receive ACK for 6, 7, 8, 9 our CWD is sufficiently large to
allow to us to send 10, 11. When the re-transmitted segment
1 reaches the receiver we get a fresh ACK and we exit fast-
recovery and set CWD to 4. Then we get two more ACKs for
2(due to 10, 11) so once again we enter fast-retransmit and
re-transmit 2 and then enter fast recovery. Thus when we exit
fast recovery for the second time our window size is set to 2.
Thus we reduced our window size twice for packets lost in
one window.

Another problem is that if the widow is very small when
the loss occurs then we would never receive enough duplicate
acknowledgements for a fast retransmit and we would have to
wait for a coarse grained timeout. Thus is cannot effectively
detect multiple packet losses.

C. TCP New Reno

The experimental version of TCP Reno is known as TCP
New Reno[6]. It is slightly different than TCP Reno in
fast recovery algorithm. New Reno is more competent than
Reno when multiple packets losses occur. New Reno and
Reno both correspond to go through fast retransmit when
multiple duplicate packets received, but it does not come out
from fast recovery phase until all outstanding data was not
acknowledged . It implies that in New Reno, partial ACK
do not take TCP out of fast recovery but they are treated as
an indicator that the packet in the sequence space has been
lost, and should be retransmitted. Therefore, when multiple
packets are lost from a single window of data, at this time
New Reno can improve without retransmission time out. The
retransmitting rate is one packet loss per round trip time until
all of the lost packets from that window have been transmitted.
It exist in fast recovery till all the data is injected into network,
and still waiting for an acknowledgement that fast recovery
was initiated.

The critical issue in TCP New Reno[6] is that it is capable
of handling multiple packet losses in a single window. It is
limited to detecting and resending only one packet loss per
round - trip-time. This insufficiency becomes more distinct as
the delaybandwidth becomes greater.

However, still there are situations when stalls can occur if
packets are lost in successive windows, like all of the previous
versions of TCP New Reno which infer that all lost packets
are dueto congestion and it may therefore unnecessarily cut
the congestion window size when errors occur. There are[6]
some steps of congestion control for New Reno transmission

4
control protocol.

D. Selective Acknowledgment (Sack)

The Selective Acknowledgment (SACK) mechanism,
RFC2018, an extension to Transmission Control Protocols
(TCP) ACK mechanism, allows a data receiver to explicitly
acknowledge arrived out-of-order data to a data sender. When
using SACKs, a TCP data sender need not retransmit SACK
data during the loss recovery period. Previous research showed
that SACKs improve TCP throughput when multiple losses oc-
cur within the same window. The success of SACK-based loss
recovery algorithm is proportional to the SACK information
received from the data receiver [7].

With selective acknowledgments, the data receiver can in-
form the sender about all segments that have arrived success-
fully, so the sender need retransmit only the segments that
have actually been lost [8].

TCP with Selective Acknowledgments is an extension of
TCP Reno and it works around the problems face by TCP
Reno and TCP New-Reno, namely detection of multiple lost
packets, and re-transmission of more than one lost packet per
RTT [9]. SACK retains the Slow-Start and Fast Re-Transmit
parts of Reno. It also has the coarse grained timeout of Tahoe
to fall back on, in case a packet loss is not detected by
the modified algorithm. TCP-Sack requires that segments not
be acknowledged cumulatively but should be acknowledged
selectively. Thus each ACK has a block which describes which
segments are being acknowledged. Thus the sender has a
picture of which segments have been acknowledged and which
are still outstanding. Whenever the sender enters fast recovery,
it initializes a variable pipe which is an estimate of how much
data is outstanding in the network, and it also set CWND
to half the current size. Every time it receives an ACK it
reduces the pipe by 1 and every time it retransmits a segment
it increments it by 1. Whenever the pipe goes smaller than the
CWD window it checks which segments are not received and
send them. If there are no such segments outstanding then it
sends a new packet. Thus more than one lost segment can be
sent in one RTT.

Problem with SACK is that currently selective acknowl-
edgements are not provided by the receiver to implement
SACK well need to implement selective acknowledgment
which is not a very easy task and Requires modification to
the acknowledgement procedures at both sender and receiver
sides.

E. Tcp Westwood

TCP Westwood proposes an end-to-end bandwidth estima-
tion algorithm based on TCP Reno. TCP Westwood imple-
ments slow start and congestion avoidance phases as TCP
Reno, but instead of halving the congestion window size
as in TCP Reno when congestion happens, TCP Westwood
adaptively estimates the available bandwidth and sets the
congestion window size and slow start threshold accordingly to
improve the link utilization. In TCP Westwood, packet loss is
indicated by the reception of 3 duplicated acknowledgements
(DUPACKs) or timeout expiration.

This sets the cwnd to 1 and ssthresh to BE after the timeout

event and then the TCP Reno behavior continues. In TCP
Westwood, the setting of ssthresh and cwnd is based on the
bandwidth estimation, which is obtained by measuring the
rate of the acknowledgments and collecting the information of
the amount of packets delivered to the receiver in the ACK.
Samples of bandwidth are computed as the amount of packet
delivered divided by the inter-arrival time between two ACKs.
Those sample bandwidth estimates are then filtered to achieve
an accurate and fair estimation. TCP Westwood modifies the
Additive Increase and Multiplicative Decrease (AIMD) in TCP
Reno and adaptively sets the transmission rates to remove the
oscillatory behavior of TCP Reno and to maximize the link
utilizations. But this also causes TCP Westwood to degrade
the performance of TCP Reno connections when they coexist
in the network [10].

Problems of Tcp Westwood Perform poorly if it estimates
incorrect bandwidth. Because of unpredictability in the be-
havior of the bandwidth estimation scheme used in TCP
Westwood. Changes in the inter-arrival times of the acknowl-
edgements cause improvement or worsening of the throughput
in rather unpredictable ways. Additionally, the sensitivity of
TCP Westwood Ackd Interval is variable.

F. TCP WestwoodNR

In TCP WestwoodNR [9] the sender continuously computes
the connection Bandwidth Estimate (BWE) which is defined
as the share of bottleneck bandwidth used by the connection.
Thus, BWE is equal to the rate at which data is delivered
to the TCP receiver. The estimate is based on the rate at
which ACKs are received and on their payload. After a
packet loss indication, (i.e, reception of 3 duplicate ACKs, or
timeout expiration). The sender resets the congestion window
and the slow start threshold based on BWE. More precisely,
Cwin=BWE x RTT. To understand the rationale of TCP-
WNR, note that BWE varies from flow to flow sharing the
same bottleneck; it corresponds to the rate actually achieved
by each INDIVIDUAL flow. Thus, it is a FEASIBLE (i.e.
achievable) rate by definition. Consequently, the collection of
all the BWE rates, as estimated by the connections sharing
the same bottleneck, is a FEASIBLE set. When the bottle-
neck becomes saturated and packets are dropped, TCP-WNR
selects a set of congestion windows that correspond exactly
to the measured BWE rates and thus reproduce the current
individual throughputs. The solution is feasible, but it is not
guaranteed per se to be fair share. An additional property of
this scheme, described in Section III, drives the rates to the
same equilibrium point and makes it fair share under uniform
propagation delays and single bottleneck assumptions. Another
important element of this procedure is the RTT estimation.
RTT is required to compute the window that supports the
estimated rate BWE. Ideally, the RTT should be measured
when the bottleneck is empty. In practice, it is set equal to the
overall minimum round trip delay (RTTmin) measured so far
on that connection (based on continuous monitoring of ACK
RTTs).

5
G. Tcp Vegas

Bandwidth Estimation scheme used by TCP Vegas is
more efficient than other TCP variants. This scheme makes
bandwidth estimation by using the difference between the
expected flow rates and the actual flow rates. TCP Vegas
was introduced in 1994 as an alternative to TCP Reno and
its implementation and tests showed that it achieves better
throughput than TCP Reno. TCP Vegas bandwidth estimation
differs from that in TCP Reno. Unlike TCP Reno, which
uses packet loss as the indication of network congestion, TCP
Vegas uses the difference between the estimated throughput
and the measured throughput as the measure of congestion.
TCP Vegas records the smallest measured round trip time as
BaseRTT and computes the available bandwidth as: Expected-
Bandwidth = WindowSize/ BaseRTT Where the WindowSize
is the current window size. During the packet transmission,
the round trip time (RTT) of packets are recorded. The actual
throughput is calculated as: ActualBandwidth = WindowSize/
RTT The difference between the ExpectedBandwidth and
ActualBandwidth is used to adjust the WindowSize: Diff =
ExpectedBandwidth - Actual Bandwidth Two values α and β

(0 l α l l) are defined as the thresholds. If Diff l α

, the window size is increased during the next RTT; if Diff
m β , then the window size is decreased during the next
RTT. Otherwise, the window size is unchanged. The goal of
TCP Vegas is to keep a certain number of packets or bytes
in the queues of the network [11]. If the actual throughput is
smaller than the expected throughput, TCP Vegas takes this as
indication of network congestion, and if the actual throughput
is very close to the expected throughput, it is suggested that
the available bandwidth is not fully utilized, so TCP Vegas
increases the window size.

This mechanism used in TCP Vegas to estimate the available
bandwidth does not purposely cause any packet loss. Hence
the oscillatory behavior is removed and a better throughput
is achieved. Retransmission mechanism used by TCP-Vegas
is more efficient as compared to TCP-Reno as it retransmits
the corresponding packet as soon as it receives a single
duplicate ACK and does not wait for three ACKs. TCP-
Vegas as compared to TCP-Reno is more accurate and is less
aggressive, thus it does not reduce its CWND unnecessarily.

It has problems when packets do not follow the same
route and when large delays are present. When routes change
for a certain TCP Vegas flow, the BaseRTT recorded from
the previous route is no longer accurate; this affects the
accuracy of ActualBandwidth and subsequently influences the
performance of TCP Vegas. TCP Vegas could become unstable
when there is large network delay for a flow; later established
connections cannot get a fair share of the bandwidth, and
when they coexist with TCP Reno connections, TCP Reno
connections use most of the bandwidth.

H. FACK

The development in TCP SACK with Forward Acknowl-
edgement is identified as TCP FACK [3]. The utilization of
TCP FACK is almost identical to SACK but it establishes
a little enhancement evaluated to it. It uses SACK option
to better estimate the amount of data in transit. TCP FACK

introduces a better way to halve the window when congestion
is detected. When CWND is immediately halved, the sender
stops transmitting for a while and then resumes when enough
data has left the network. In this one RTT can be avoided when
the window is gradually decreased .When congestion occurs;
the window should be halved according to the multiplicative
decrease of the correct CWND. Since the sender identifies
congestion at least one RTT after it happened, if during that
RTT it was in slow start mode, then the current CWND will
be almost double than CWND when congestion occurred.

Therefore, in this case, CWND is first halved to estimate
the correct CWND that should be further decreased.

IV. CONCLUSION
A detail review of existing TCP variants and its applicable

algorithm are analyzed and describe about the protocol which
one is better and suitable for packet and link utilization in
the network congestion and link failure condition in Ad-hoc
network environment because the traditional TCP treat all
packet losses due to the congestion, it does not treat from
the link failure.

The review are obtained and analyzed by the TCP variants:
TCP Tahoe, TCP Reno, TCP New Reno, and TCP Vegas,
TCP SACK, TCP Westwood,TCP WestwoodNR, TCP FACK
. The most of protocol shows better uses and many of them
shows poor responsiveness to changing network conditions
and network utilization. Although there are various protocols
and algorithms have been used, there is no single algorithm
that can overcome the congested and unreliable nature of
network. Here each and every variant has its own advantages
and disadvantages to solve the networks problem s of TCP
protocol.

In short, any protocol will be effective based on the param-
eters that are to be taken into consideration. To conclude this
area is not completely explored to it maximum and still lot
more research can be done towards establishing a basis for
the development of new protocols.

V. FUTURE WORK
In previous Review Which had considered all the problems

occurred in various TCP variants. Due to these problems
throughput decreased, packet loss increased and delay oc-
curred. Also considered difference between each variant. So,
the aim of new TCP Variant is to increase the throughput with
minimum packet loss and minimum delay as compared with
other variants.

REFERENCES
[1] JeroenHoebeke, Ingrid Moerman, Bart Dhoedt and Piet
Demeester, An Overview of Mobile Ad Hoc Networks: Appli-
cations and ChallengesDepartment of Information Technology
(INTEC),Ghent University
[2] Ahmad Al Hanbali, Eitan Altman, And Philippe Nain,
Inria Sophia Antiplolis France, A SURVEY OF TCP OVER
AD HOC NETWORKS, IEEE Communications Surveys and
Tutorials ,Third Quarter 2005.
[3] SUN Xiaoling TCP Congestion Control Algorithm Re-
search Computer and Information Engineering Institute Chaf-
ing University
[4] http://www.ukessays.com/ePssays/communications/transmission-
control protocol

6
[5] Mrs.Alaa Ghaleb Seddik, TCP performance Study and
Enhancement within wireless Multi-hop Ad-hoc network en-
vironments 30 March 2009.
[6] Dhananjay Bisen and Sanjeev Sharma IMPROVE PER-
FORMANCE OF TCP NEW RENO OVER MOBILE AD-
HOC NETWORK USING ABRA International Journal of
Wireless and Mobile Networks (IJWMN) Vol. 3, No. 2, April
2011
[7] Nasif Ekiz Abuthahir Habeeb Rahman Paul D. Amer
Misbehaviors in TCP SACK Generation ACM SIGCOMM
[8] http://www.ietf.org/rfc/rfc2018.txt
[9] Claudio Casetti,Mario Gerla,SaverioMascolo,M.Y. Sana-
didi And Ren Wang, TCPWestwood: End-to-End Congestion
Control for Wired/Wireless NetworksWireless Networks 8,
467479, 2002
[10] Saleem-ullah Lar, Xiaofeng Liao and Songtao Guo, Mod-
eling TCP NewReno Slow Start and Congestion- Avoidance
using Simulation Approach, in IJCSNS International Journal
of Computer Science and Network Security, VOL.11 No.1,
January 2011. Technical Report IAM-02-003, Univ. of Bern,
July 2001.
[11] Seddik-Ghaleb, Y. Ghamri-Doudane, and S. M. Senouci,
”TCP WELCOME TCP Variant for Wireless Environment,
Link losses, and COngestion packet loss ModEls, in First In-
ternational Communication Systems and Networks and Work-
shops, COMSNETS 2009

